Bayesian modeling of a bivariate toxicity outcome for early phase oncology trials evaluating dose regimens - Sorbonne Université
Journal Articles Statistics in Medicine Year : 2021

Bayesian modeling of a bivariate toxicity outcome for early phase oncology trials evaluating dose regimens

Abstract

Bayesian joint modeling, bivariate toxicity, cumulative probability of toxicity, dose regimen, early phase oncology, pharmacokinetics/pharmacodynamics 1 INTRODUCTION Most phase I dose-finding trials in oncology aim to determine the maximum tolerated dose (MTD), which is defined as the highest dose that does not exceed a predefined probability of dose-limiting toxicity (DLT), in a prespecified observational window. The DLT is a binary outcome defined to summarize the patient's toxicity profile and is usually derived from Moreno Ursino and Marie-Karelle Riviere contributed equally to this study. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Domains

Cancer
Fichier principal
Vignette du fichier
sim.9113.pdf (1.22 Mo) Télécharger le fichier
Origin Publication funded by an institution

Dates and versions

hal-03288022 , version 1 (16-07-2021)

Identifiers

Cite

Emma Gerard, Sarah Zohar, Christelle Lorenzato, Moreno Ursino, Marie‐karelle Riviere. Bayesian modeling of a bivariate toxicity outcome for early phase oncology trials evaluating dose regimens. Statistics in Medicine, 2021, ⟨10.1002/sim.9113⟩. ⟨hal-03288022⟩

Relations

42 View
115 Download

Altmetric

Share

More