Degenerating K\"ahler-Einstein cones, locally symmetric cusps, and the Tian-Yau metric - Sorbonne Université
Pré-Publication, Document De Travail Année : 2021

Degenerating K\"ahler-Einstein cones, locally symmetric cusps, and the Tian-Yau metric

Résumé

Let $X$ be a complex projective manifold and let $D\subset X$ be a smooth divisor. In this article, we are interested in studying limits when $k\to 0$ of K\"ahler-Einstein metrics $\omega_k$ with a cone singularity of angle $2\pi k$ along $D$. In our first result, we assume that $X\setminus D$ is a locally symmetric space and we show that $\omega_k$ converges to the locally symmetric metric and further give asymptotics of $\omega_k$ when $X\setminus D$ is a ball quotient. Our second result deals with the case when $X$ is Fano and $D$ is anticanonical. We prove a folklore conjecture asserting that a rescaled limit of $\omega_k$ is the complete, Ricci flat Tian-Yau metric on $X\setminus D$. Furthermore, we prove that $(X,\omega_k)$ converges to an interval in the Gromov-Hausdorff sense.
Fichier principal
Vignette du fichier
cones2zero.pdf (392.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03333520 , version 1 (06-10-2021)
hal-03333520 , version 2 (20-07-2022)

Identifiants

Citer

Olivier Biquard, Henri Guenancia. Degenerating K\"ahler-Einstein cones, locally symmetric cusps, and the Tian-Yau metric. 2021. ⟨hal-03333520v1⟩
93 Consultations
45 Téléchargements

Altmetric

Partager

More