Integral p-adic Hodge theory of formal schemes in low ramification - Sorbonne Université
Journal Articles Algebra & Number Theory Year : 2021

Integral p-adic Hodge theory of formal schemes in low ramification

Abstract

We prove that for any proper smooth formal scheme X over OK, where OK is the ring of integers in a complete discretely valued nonarchimedean extension K of Qp with perfect residue field k and ramification degree e, the i-th Breuil–Kisin cohomology group and its Hodge–Tate specialization admit nice decompositions when ie
Fichier principal
Vignette du fichier
Min - 2021 - Integral p-adic Hodge theory of formal schemes in .pdf (411.04 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03374362 , version 1 (12-10-2021)

Identifiers

Cite

Yu U Min. Integral p-adic Hodge theory of formal schemes in low ramification. Algebra & Number Theory, 2021, 15 (4), pp.1043-1076. ⟨10.2140/ant.2021.15.1043⟩. ⟨hal-03374362⟩
19 View
27 Download

Altmetric

Share

More