Skip to Main content Skip to Navigation
Journal articles

Numerical validation of probabilistic laws to evaluate finite element error estimates

Abstract : We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements P k and Pm, (k < m). In particular, we show practical cases where finite element P k gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.
Document type :
Journal articles
Complete list of metadata

https://hal.sorbonne-universite.fr/hal-03467749
Contributor : Gestionnaire Hal-Su Connect in order to contact the contributor
Submitted on : Monday, December 6, 2021 - 4:43:09 PM
Last modification on : Tuesday, January 4, 2022 - 6:30:18 AM

File

14079-Article Text-57390-5-10-...
Publication funded by an institution

Identifiers

Citation

Jöel Chaskalovic, Franck Assous. Numerical validation of probabilistic laws to evaluate finite element error estimates. Mathematical Modelling and Analysis, Taylor&Francis and VGTU, 2021, 26 (4), pp.684 - 695. ⟨10.3846/mma.2021.14079⟩. ⟨hal-03467749⟩

Share

Metrics

Les métriques sont temporairement indisponibles