The inviscid limit for the 2d Navier-Stokes equations in bounded domains - Sorbonne Université
Journal Articles Kinetic and Related Models Year : 2021

The inviscid limit for the 2d Navier-Stokes equations in bounded domains

Claude Bardos
  • Function : Author
  • PersonId : 890454
Trinh T Nguyen
  • Function : Author
  • PersonId : 1125252
Toan T Nguyen
  • Function : Author
  • PersonId : 1125253
Edriss S Titi
  • Function : Author
  • PersonId : 1125254

Abstract

We prove the inviscid limit for the incompressible Navier-Stokes equations for data that are analytic only near the boundary in a general two-dimensional bounded domain. Our proof is direct, using the vorticity formulation with a nonlocal boundary condition, the explicit semigroup of the linear Stokes problem near the flatten boundary, and the standard wellposedness theory of Navier-Stokes equations in Sobolev spaces away from the boundary. Contents
Fichier principal
Vignette du fichier
2111.14782.pdf (301.61 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03556850 , version 1 (04-02-2022)

Identifiers

Cite

Claude Bardos, Trinh T Nguyen, Toan T Nguyen, Edriss S Titi. The inviscid limit for the 2d Navier-Stokes equations in bounded domains. Kinetic and Related Models , 2021, ⟨10.3934/krm.2022004⟩. ⟨hal-03556850⟩
18 View
62 Download

Altmetric

Share

More