Uniform observation of semiclassical Schrödinger eigenfunctions on an interval - Sorbonne Université
Pré-Publication, Document De Travail Année : 2022

Uniform observation of semiclassical Schrödinger eigenfunctions on an interval

Résumé

We consider eigenfunctions of a semiclassical Schrödinger operator on an interval, with a single-well type potential and Dirichlet boundary conditions. We give upper/lower bounds on the L^2 density of the eigenfunctions that are uniform in both semiclassical and high energy limits. These bounds are optimal and are used in an essential way in a companion paper in application to a controllability problem. The proofs rely on Agmon estimates and a Gronwall type argument in the classically forbidden region, and on the description of semiclassical measures for boundary value problems in the classically allowed region. Limited regularity for the potential is assumed.
Fichier principal
Vignette du fichier
spectral-1D.pdf (506.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03597902 , version 1 (04-03-2022)
hal-03597902 , version 2 (19-09-2022)

Identifiants

Citer

Camille Laurent, Matthieu Léautaud. Uniform observation of semiclassical Schrödinger eigenfunctions on an interval. 2022. ⟨hal-03597902v1⟩
53 Consultations
49 Téléchargements

Altmetric

Partager

More