A Hamilton-Jacobi Approach to Evolution of Dispersal
Abstract
The evolution of dispersal is a classical question in evolutionary biology, and it has been studied in a wide range of mathematical models. A selection-mutation model, in which the population is structured by space and a phenotypic trait, with the trait acting directly on the dispersal (diffusion) rate, was formulated by Perthame and Souganidis [Math. Model. Nat. Phenom. 11 (2016), 154-166] to study the evolution of random dispersal towards the evolutionarily stable strategy. For the rare mutation limit, it was shown that the equilibrium population concentrates on a single trait associated to the smallest dispersal rate. In this paper, we consider the corresponding evolution equation and characterize the asymptotic behaviors of the time-dependent solutions in the rare mutation limit, under mild convexity assumptions on the underlying Hamiltonian function.
Origin | Files produced by the author(s) |
---|