Discrete moments models for Vlasov equations with non constant strong magnetic limit - Sorbonne Université Access content directly
Journal Articles Comptes Rendus. Mécanique Year : 2023

Discrete moments models for Vlasov equations with non constant strong magnetic limit

Abstract

We describe the structure of an original application of the method of moments to the Vlasov-Poisson system with non constant strong magnetic field in three dimensions of space. Using basis functions which are aligned with the magnetic field, one obtains a Friedrichs system where the kernel of the singular part is made explicit. A projection of the original model on this kernel yields what we call the reduced model. Basic numerical tests of the field illustrate the accuracy of our implementation. A new generating formula for Laguerre polynomials is obtained in the appendix as a byproduct of the analysis.
Fichier principal
Vignette du fichier
main-05-12-2022.pdf (2.23 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03927990 , version 1 (06-01-2023)

Identifiers

Cite

Frédérique Charles, Bruno Després, Ruiyang Dai, Sever Adrian Hirstoaga. Discrete moments models for Vlasov equations with non constant strong magnetic limit. Comptes Rendus. Mécanique, 2023, 351 (S1), pp.1-23. ⟨10.5802/crmeca.219⟩. ⟨hal-03927990⟩
156 View
157 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More