Asymptotics for the green's functions of a transient reflected brownian motion in a wedge - Sorbonne Université
Journal Articles Queueing Systems Year : 2024

Asymptotics for the green's functions of a transient reflected brownian motion in a wedge

Abstract

We consider a transient Brownian motion reected obliquely in a two-dimensional wedge. A precise asymptotic expansion of Green's functions is found in all directions. To this end, we rst determine a kernel functional equation connecting the Laplace transforms of the Green's functions. We then extend the Laplace transforms analytically and study its singularities. We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on the Riemann surface generated by the kernel.
Fichier principal
Vignette du fichier
franceschi_kourkova_petit_final.pdf (1.82 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04228078 , version 1 (04-10-2023)
hal-04228078 , version 2 (12-08-2024)

Identifiers

Cite

Sandro Franceschi, Irina Kourkova, Maxence Petit. Asymptotics for the green's functions of a transient reflected brownian motion in a wedge. Queueing Systems, 2024, ⟨https://doi.org/10.1007/s11134-024-09925-y⟩. ⟨hal-04228078v2⟩
81 View
23 Download

Altmetric

Share

More