Asymptotics for the green's functions of a transient reflected brownian motion in a wedge - Sorbonne Université
Article Dans Une Revue Queueing Systems Année : 2024

Asymptotics for the green's functions of a transient reflected brownian motion in a wedge

Résumé

We consider a transient Brownian motion reected obliquely in a two-dimensional wedge. A precise asymptotic expansion of Green's functions is found in all directions. To this end, we rst determine a kernel functional equation connecting the Laplace transforms of the Green's functions. We then extend the Laplace transforms analytically and study its singularities. We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on the Riemann surface generated by the kernel.
Fichier principal
Vignette du fichier
franceschi_kourkova_petit_final.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04228078 , version 1 (04-10-2023)
hal-04228078 , version 2 (12-08-2024)

Identifiants

Citer

Sandro Franceschi, Irina Kourkova, Maxence Petit. Asymptotics for the green's functions of a transient reflected brownian motion in a wedge. Queueing Systems, 2024, ⟨https://doi.org/10.1007/s11134-024-09925-y⟩. ⟨hal-04228078v2⟩
81 Consultations
23 Téléchargements

Altmetric

Partager

More