Asymptotics for the green's functions of a transient reflected brownian motion in a wedge - Sorbonne Université Access content directly
Preprints, Working Papers, ... Year : 2023

Asymptotics for the green's functions of a transient reflected brownian motion in a wedge

Abstract

We consider a transient Brownian motion reected obliquely in a two-dimensional wedge. A precise asymptotic expansion of Green's functions is found in all directions. To this end, we rst determine a kernel functional equation connecting the Laplace transforms of the Green's functions. We then extend the Laplace transforms analytically and study its singularities. We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on the Riemann surface generated by the kernel.
Fichier principal
Vignette du fichier
franceschi_kourkova_petit_final.pdf (1.82 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04228078 , version 1 (04-10-2023)
hal-04228078 , version 2 (12-08-2024)

Identifiers

  • HAL Id : hal-04228078 , version 2

Cite

Sandro Franceschi, Irina Kourkova, Maxence Petit. Asymptotics for the green's functions of a transient reflected brownian motion in a wedge. 2023. ⟨hal-04228078v2⟩
33 View
11 Download

Share

Gmail Mastodon Facebook X LinkedIn More