Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models - Sorbonne Université
Article Dans Une Revue Cell Reports Année : 2021

Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models

Résumé

Functional precision medicine aims to match individual cancer patients to optimal treatment through ex vivo drug susceptibility testing on patient-derived cells. However, few functional diagnostic assays have been validated against patient outcomes at scale because of limitations of such assays. Here, we describe a high-throughput assay that detects subtle changes in the mass of individual drug-treated cancer cells as a surrogate biomarker for patient treatment response. To validate this approach, we determined ex vivo response to temozolomide in a retrospective cohort of 69 glioblastoma patient-derived neurosphere models with matched patient survival and genomics. Temozolomide-induced changes in cell mass distributions predict patient overall survival similarly to O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and may aid in predictions in gliomas with mismatch-repair variants of unknown significance, where MGMT is not predictive. Our findings suggest cell mass is a promising functional biomarker for cancers and drugs that lack genomic biomarkers.

Domaines

Neurosciences
Fichier principal
Vignette du fichier
PIIS221112472101247X.pdf (5.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04536889 , version 1 (08-04-2024)

Licence

Identifiants

Citer

Max A Stockslager, Seth Malinowski, Mehdi Touat, Jennifer C Yoon, Jack Geduldig, et al.. Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models. Cell Reports, 2021, 37 (1), pp.109788. ⟨10.1016/j.celrep.2021.109788⟩. ⟨hal-04536889⟩
31 Consultations
10 Téléchargements

Altmetric

Partager

More