Automated Parameter Determination for Enhancing the Product Configuration System of Renault: An experience report - Sorbonne Université
Communication Dans Un Congrès Année : 2024

Automated Parameter Determination for Enhancing the Product Configuration System of Renault: An experience report

Tewfik Ziadi
Siham Essodaigui
  • Fonction : Auteur
  • PersonId : 1074641
Yves Bossu
  • Fonction : Auteur
  • PersonId : 1130905

Résumé

The problem of configuring the variability models is pervasive in plenty of domains. Renault, a leading automobile manufacturer, has developed an internal product configuration system to model its vehicle diversity. This system is based on the well-known knowledge compilation approach and is associated with a set of parameters. Different input parameters have a strong influence on the system's performance. The parameters actually used are determined manually. Our work aims to study and determine these parameters automatically. This paper studies Renault's variability models and product configuration system and presents a parameter prediction model for this system. The results show the predicted parameters' competitiveness compared with the parameters by default
Fichier principal
Vignette du fichier
ICECCS_2024.pdf (1.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04539975 , version 1 (05-07-2024)

Identifiants

  • HAL Id : hal-04539975 , version 1

Citer

Hao Xu, Souheib Baarir, Tewfik Ziadi, Siham Essodaigui, Yves Bossu. Automated Parameter Determination for Enhancing the Product Configuration System of Renault: An experience report. 28th International Conference on Engineering of Complex Computer Systems (ICECCS 2024), Jun 2024, Limassol, Cyprus. ⟨hal-04539975⟩
82 Consultations
39 Téléchargements

Partager

More