Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one - Sorbonne Université
Pré-Publication, Document De Travail Année : 2014

Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one

Résumé

This paper deals with the estimation of a probability measure on the real line from data observed with an additive noise. We are interested in rates of convergence for the Wasserstein metric of order $p\geq 1$. The distribution of the errors is assumed to be known and to belong to a class of supersmooth or ordinary smooth distributions. We obtain in the univariate situation an improved upper bound in the ordinary smooth case and less restrictive conditions for the existing bound in the supersmooth one. In the ordinary smooth case, a lower bound is also provided, and numerical experiments illustrating the rates of convergence are presented.
Fichier principal
Vignette du fichier
Wasserstein-Hal.pdf (385.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00971316 , version 1 (02-04-2014)
hal-00971316 , version 2 (03-03-2015)
hal-00971316 , version 3 (27-01-2016)

Identifiants

Citer

Jérôme Dedecker, Aurélie Fischer, Bertrand Michel. Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one. 2014. ⟨hal-00971316v1⟩
1038 Consultations
597 Téléchargements

Altmetric

Partager

More