Proximal Optimization for Fuzzy Subspace Clustering - Sorbonne Université Access content directly
Conference Papers Year : 2016

Proximal Optimization for Fuzzy Subspace Clustering


This paper proposes a fuzzy partitioning subspace clustering algorithm that minimizes a variant of the FCM cost function with a weighted Euclidean distance and a penalty term. To this aim it considers the framework of proximal optimization. It establishes the expression of the proximal operator for the considered cost function and derives PFSCM, an algorithm combining proximal descent and alternate optimization. Experiments show the relevance of the proposed approach.
Fichier principal
Vignette du fichier
ipmu-article.pdf (314.95 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01364652 , version 1 (12-09-2016)



Arthur Guillon, Marie-Jeanne Lesot, Christophe Marsala, Nikhil R. Pal. Proximal Optimization for Fuzzy Subspace Clustering. 16th International Conference on Information processing and Management of Uncertainty (IPMU 2016), Jun 2016, Eindhoven, Netherlands. pp.675-686, ⟨10.1007/978-3-319-40596-4_56⟩. ⟨hal-01364652⟩
184 View
341 Download



Gmail Facebook X LinkedIn More