Semi-discretization for Stochastic Scalar Conservation Laws with Multiple Rough Fluxes - Sorbonne Université
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2016

Semi-discretization for Stochastic Scalar Conservation Laws with Multiple Rough Fluxes

Résumé

We develop a semi-discretization approximation for scalar conservation laws with multiple rough time dependence in inhomogeneous fluxes. The method is based on Brenier's transport-collapse algorithm and uses characteristics defined in the setting of rough paths. We prove strong L 1-convergence for inhomogeneous fluxes and provide a rate of convergence for homogeneous one's. The approximation scheme as well as the proofs are based on the recently developed theory of path-wise entropy solutions and uses the kinetic formulation which allows to define globally the (rough) characteristics.
Fichier principal
Vignette du fichier
Semi-discretization_for_SSCL.pdf (370.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01481284 , version 1 (02-03-2017)

Identifiants

Citer

Benjamin Gess, Benoît Perthame, Panagiotis E. Souganidis. Semi-discretization for Stochastic Scalar Conservation Laws with Multiple Rough Fluxes. SIAM Journal on Numerical Analysis, 2016, 54 (4), pp.2187-2209. ⟨10.1137/15M1053670⟩. ⟨hal-01481284⟩
451 Consultations
231 Téléchargements

Altmetric

Partager

More