Skip to Main content Skip to Navigation
Conference papers

Online Trajectory Planning Through Combined Trajectory Optimization and Function Approximation: Application to the Exoskeleton Atalante

Abstract : Autonomous robots require online trajectory planning capability to operate in the real world. Efficient offline trajectory planning methods already exist, but are computationally demanding, preventing their use online. In this paper, we present a novel algorithm called Guided Trajectory Learning that learns a function approximation of solutions computed through trajectory optimization while ensuring accurate and reliable predictions. This function approximation is then used online to generate trajectories. This algorithm is designed to be easy to implement, and practical since it does not require massive computing power. It is readily applicable to any robotics systems and effortless to set up on real hardware since robust control strategies are usually already available. We demonstrate the computational performance of our algorithm on flat-foot walking with the self-balanced exoskeleton Atalante.
Complete list of metadata

https://hal.sorbonne-universite.fr/hal-03175242
Contributor : Nicolas Bredeche <>
Submitted on : Friday, March 19, 2021 - 7:41:29 PM
Last modification on : Wednesday, May 19, 2021 - 11:58:16 AM

File

ICRA2020_GuidedTrajectoryLearn...
Files produced by the author(s)

Identifiers

Citation

Alexis Duburcq, Yann Chevaleyre, Nicolas Bredeche, Guilhem Boéris. Online Trajectory Planning Through Combined Trajectory Optimization and Function Approximation: Application to the Exoskeleton Atalante. ICRA 2020- International Conference on Robotics and Automation, 2020, Paris (virtual), France. ⟨10.1109/ICRA40945.2020.9196633⟩. ⟨hal-03175242⟩

Share

Metrics

Record views

24

Files downloads

57