Understanding Fractality: A Polyhedral Approach to the Koch Curve and its Complex Dimensions - Sorbonne Université
Pré-Publication, Document De Travail Année : 2023

Understanding Fractality: A Polyhedral Approach to the Koch Curve and its Complex Dimensions

Résumé

We extend our results about the Weierstrass Curve to the Koch Curve and provide exact expressions of the volume of polyhedral neighborhoods for the sequence of prefractal graphs which converge to the Koch Curve. We also introduce the associated local and global polyhedral fractal zeta functions. The actual poles of the global polyhedral fractal zeta function, which are all simple, yield the set of exact Complex Dimensions of the Koch Curve, a result which had never been obtained before.
Fichier principal
Vignette du fichier
Understanding.pdf (423.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04348346 , version 1 (16-12-2023)
hal-04348346 , version 2 (28-06-2024)
hal-04348346 , version 3 (29-07-2024)

Identifiants

  • HAL Id : hal-04348346 , version 3

Citer

Claire David, Michel L Lapidus. Understanding Fractality: A Polyhedral Approach to the Koch Curve and its Complex Dimensions. 2024. ⟨hal-04348346v3⟩
123 Consultations
86 Téléchargements

Partager

More